
Implementations of DFT and
FFT

Speaker: Jia-Ming Lin

Outline

● Discrete Fourier Transform(DFT) and its Application
● Matrix-Vector Multiplication Optimization
● HLS implementation of DFT and Optimization
● HLS implementation of FFT and Optimization
● Labs

○ Matrix-Vector Multiplication and Optimization
○ DFT and Optimization
○ FFT and Optimization

Discrete Fourier Transform(DFT) and its Application

● Change a discrete signal in time domain to the same signal in frequency
domain.

DFT

● point DFT can be determined through matrix multiplied by a vector
of size

● : real valued discrete function
 : matrix of DFT coefficients
 : converted function in frequency domain

Discrete Fourier Transform(DFT) and its Application

● Example: visualization of the DFT coefficients for an 8 point DFT operation

Discrete Fourier Transform(DFT) and its Application

● Multiply by Row 0:
Rotate by 0 degree

● Multiply by Row 1:
Rotate by
1*(360/8)*j = 1*(45)*j degree

● Multiply by Row 2:
Rotate by
2*(360/8)*j = 2*(45)*j degree

● ...

● Multiply by Row N-1:
Rotate by
(N-1)*(360/8)*j = (N-1)*(45)*j degree

● Application: MP3 Audio Compression

Discrete Fourier Transform(DFT) and its Application

https://www.projectrhea.org/rhea/index.php/Use_of_Fourier_Transforms_in_MP3_Audio_Compression

Matrix-Vector Multiplication Optimization

Baseline

● Advantage: Minimal resource consumption
● Disadvantage: Long task latency and task interval

Pipelining and Parallelism

● 32-bit x 32-bit integer multiplier
○ Chained 3 DSPs, takes 3 cycles to complete

● Pipelined Multiplier ⇒ at most 3 concurrent multiplications.

DSP_1

DSP_2

DSP_3

ADD

PRODUCT_
LOOP

Task
Interval

Task
Latency

Total
Latency

Without Pipeline 4 4 4*8=32

With Pipeline 1 4 8+(4-1)=11

Pipelining and Parallelism

● Parallelize multiplications in vectors’ product

Fully Unroll +
Array Partition

● Resources and Performance Tradeoff
○ When SIZE = 1024, it is not possible to fully unroll due to resource constraints.

■ We consider this case in Lab
● Partially unroll with specifying factor

○ Example: (1)SIZE = 8, (2) four parallel 32-bit x 32-bit multipliers

Pipelining and Parallelism

HLS implementation of DFT and Optimization

Baseline
● In MP3 audio compression, the size of DFT is 1024.
● Implementing DFT by directly using matrix-vector multiplication is not

practical.
○ Since DFT coefficient array is sized 1024x1024
○ Computing the coefficients of DFT in each iteration

of the inner loop.

● g[j] is a complex number
● Multiplying by S[i][j] is said to

perform rotation

S

Optimization: loop interchange
● Pipeline on loop “j”

● Since data type is float, the
critical path is on float adder,
takes 5 cycles.

● temp_real[i] value depends on
result from previous iteration.

● Loop “j” can not be pipelined
with II=1

● Interchanging loop “i” and “j”
○ Iterating through “i” before “j”
○ Then pipelining in loop “i”

Loop i

Loop j

HLS implementation of FFT and Optimization

Background

● The DFT requires O(n^2) multiply and add operations.

○ Matrix-vector multiplication

● The FFT requires only O(n*log(n))

○ Divide-and-conquer approach based on the symmetry of DFT coefficient matrix

○ Refer to this video for basic concept.

https://www.youtube.com/watch?v=h7apO7q16V0

Evaluation

Given 𝒇 𝒙 = 𝒂𝟎 + 𝒂𝟏𝒙 +⋯+ 𝒂𝒏'𝟏𝒙𝒏'𝟏, evaluate on [𝟏, 𝟐, … , 𝒏]

𝒇 𝟏 = 𝒂𝟎 + 𝒂𝟏 ⋅ 𝟏 + ⋯+ 𝒂𝒏'𝟏 ⋅ 𝟏𝒏'𝟏
𝒇 𝟐 = 𝒂𝟎 + 𝒂𝟏 ⋅ 𝟐 + ⋯+ 𝒂𝒏'𝟏 ⋅ 𝟐𝒏'𝟏
𝒇 𝟑 = 𝒂𝟎 + 𝒂𝟏 ⋅ 𝟑 + ⋯+ 𝒂𝒏'𝟏 ⋅ 𝟑𝒏'𝟏
⋯
𝒇 𝒏 = 𝒂𝟎 + 𝒂𝟏 ⋅ 𝒏 + ⋯+ 𝒂𝒏'𝟏 ⋅ 𝒏𝒏'𝟏

Complexity = 𝑶(𝒏𝟐)
Can we do better?

Note: denote 𝒇 𝒙 = 𝒂𝟎 + 𝒂𝟏𝒙 +⋯+ 𝒂𝒏'𝟏𝒙𝒏'𝟏 as [𝒂𝟎, 𝒂𝟏, … , 𝒂𝒏'𝟏]

𝟏 𝟏 … 𝟏
𝟏 𝟐 … 𝟐𝒏'𝟏
… … … …
𝟏 𝒏 … 𝒏𝒏'𝟏

𝒂𝟎
𝒂𝟏
…

𝒂𝒏'𝟏

6

Evaluation
Even Function:

𝒇𝒆 𝒙 = 𝒇𝒆(−𝒙)

Example:

𝒇𝒆 𝒙 = 𝟏 + 𝒙𝟐

Odd Function:

𝒇𝒐 −𝒙 = −𝒇𝒐(𝒙)

Example:

𝒇𝒐 𝒙 = 𝒙 + 𝟐𝒙𝟑

Represent as even and odd:

𝒇 𝒙 = 𝟑 + 𝒙 + 𝒙𝟐 + 𝟒𝒙𝟑

= 𝟑 + 𝒙𝟐 + (𝒙 + 𝟒𝒙𝟑)

Choose evaluation points

[±𝒙𝟏, ±𝒙𝟐, … , ±𝒙𝒏
𝟐
]

7

Evaluation

Problem:
Evaluate 𝒇 𝒙 : 𝒂𝟎, 𝒂𝟏, … , 𝒂𝒏'𝟏 on [±𝒙𝟏, ±𝒙𝟐, … , ±𝒙𝒏

𝟐
]

𝒇 𝒙 = 𝒇𝒆 𝒙𝟐 + 𝒙𝒇𝒐(𝒙𝟐)

Sub-problem 1
Evaluate 𝒇𝒆 𝒙𝟐 : 𝒂𝟎, 𝒂𝟐, … , 𝒂𝒏'𝟐

on [𝒙𝟏𝟐, 𝒙𝟐𝟐, … , 𝒙𝒏
𝟐

𝟐]

Sub-problem 2
Evaluate 𝒇𝒐 𝒙𝟐 : 𝒂𝟏, 𝒂𝟑, … , 𝒂𝒏'𝟏

on [𝒙𝟏𝟐, 𝒙𝟐𝟐, … , 𝒙𝒏
𝟐

𝟐]

𝒇 𝒙𝒊 = 𝒇𝒆 𝒙𝒊𝟐 + 𝒙𝒊𝒇𝒐 𝒙𝒊𝟐

𝒇 −𝒙𝒊 = 𝒇𝒆 𝒙𝒊𝟐 − 𝒙𝒊𝒇𝒐(𝒙𝒊𝟐)
Recursive Algotithm 𝑶(𝒏 𝐥𝐨𝐠𝒏)

8

Background

● We usually represent computations in butterfly architecture.

+

Multiply by “-1” at lower
position

W is rotation transform

Background

● Butterfly architecture for 8 point FFT.

Where

Multiply by “-1” on lower position

Number of stages = logN

Stages are executed sequentially

Initial Implementation for Stage

● Compute rotated vector.

Initial Implementation for Stage

● Compute stage output

Increasing Throughput: Task Pipelining

● Using dataflow implementation
○ Computing multiple FFTs concurrently
○ Example: 4 concurrent 8 point FFT computations.

Increasing Throughput: Task Pipelining

● Using dataflow implementation

● HLS pragma
● Ping-Pong Buffer

Increasing Throughput: Task Pipelining

● Example: 1024 point FFT implementation

○ Before task pipelining

■ Max task latency = 2.3M cycles

■ Max task interval = 2.3M cycles

○ After task pipelining

■ Max task latency = 6k cycles

■ Max task interval = 1k cycles

○ 2000x throughput improvement than non-optimized version.

Reduce DSP Consumption

● In each stage, cos and sin are implemented using CORDIC

○ Which don’t consume DSP resource

● However, in the FFT algorithm, not much angles we need to compute.

○ Ex. 1024 point FFT only needs fixed 512 cos and sin values

○ We precompute all the values and store in BRAM

■ Consuming only 4 BRAMs in total 280 available on PYNQ-Z2

Reduce DSP Consumption

● In the 1024 point FFT, there are 10 stages

● Each stage cost 24 DSPs for float point
multiplication and addition

● 10 stages need 240 DSPs in total

○ Exceed the available DSP resource
on PYNQ-Z2

○ 220 DSPs on PYNQ-Z2

Reduce DSP Consumption
● For stage 1 computation, we actually do not need any DSP.

● Specialize a design for stage 1
● At stage 1, rotation is not needed
● Using fixed point arithmetic.

Reduce DSP Consumption

Replace
stage 1

● DSP consumption reduced from 240 to 216

○ Available DSPs on PYNQ-Z2 is 220

● Without any accuracy loss

○ We using ap_fixed<32,11> arithmetic.

○ RMSE(R) = 0.000450454419479

○ RMSE(I) = 0.000541143584996

● Performance:

○ Clock rate @ 100MHz

○ Task interval = 1028 cycles

○ Throughput = 97 kHZ

Bits Reversing and Optimizations

● Assume 8 point FFT
○ Index size can be represented by 3-bit unsigned integer.

Reversing pair of value every cycle

Bits Reversing and Optimizations
● Dependency constraints reported by the Vivado compiler

○ II = 2 is synthesised.

○ Inter-Iterations: Read to array after Write to array

● However, in our case, operations are independent across iterations

○ Add two derivatives on dependency

○ Further refer to, HLS Pragma
0

1

2

3

4

5

6

7

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/hls_pragmas.html#dxe1504034360397

Summarize

● We learned how to convert samples from time domain to frequency domain

○ DFT and FFT

● DFT computation can be mapped to Matrix-Vector Multiplication

○ And optimizing through similar techniques.

● Arithmetic complexity can be further reduced by using FFT algorithm

○ However, significant efforts should be considered to have efficient hardware implementation.

○ Our implementation on PYNQ-Z2 for 1024 point FFT can achieve throughput about 97 kHz

■ 2000x improvement in throughput than non-optimized version.

Labs

Lab 0: Matrix-Vector Multiplication and Optimizations

● Starting from baseline version without any optimization.
○ Download here.
○ Size = 1024, data type = 32-bit integer

● Optimizations
○ Pipeline
○ Partial Unroll
○ Memory Partition.

https://drive.google.com/file/d/1v8TAKoHmkXMulBmcAhllqZG3qfHvfPXE/view?usp=sharing

Lab1: DFT and Optimizations

● Starting from baseline version without any optimization.
○ Download here.
○ Size = 1024, data type = float

● Optimizations
○ Pipeline
○ Loop Interchange

https://drive.google.com/file/d/1fTw82fVx98gpvfko_smvEL8bUrg3LzSZ/view?usp=sharing

Lab2: FFT and Optimizations

● Starting from baseline version without any optimization.

○ Refer here for more instructions, and download initial implementation.

○ Size = 1024, data type = float.

● Optimizations are mentioned in previous slides.

https://pp4fpgas.readthedocs.io/en/latest/project4.html

